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Lorentz Matrices: A Review 
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This is an expository review of the Lorentz transformation, which is a change 
of coordinates used by one "inertial observer" to those used by another one. The 
transformation can be represented by a four-by-four matrix, the Lorentz matrix 
or the Minkowski-Lorentz matrix. The most familiar, or "special," case has 
the x axis of both observers parallel to their relative velocity. A more general 
transformation drops this constraint. But then a seeming "paradox" arises when 
there are three observers, and this has led to a challenge to the self-consistency 
of the special theory of relativity. It is shown here that this challenge is based 
on a misunderstanding. The properties of the more general Lorentz transformation 
are reviewed consistently in terms of the matrix approach, which the author 
believes is now the easiest approach to understand. The spectral analysis of the 
Lorentz matrix is also discussed. Several checks are included to "make assurance 
double sure." 

1. I N T R O D U C T I O N  

The  Lorentz  matrix,  as unders tood herein,  is a four-by-four  matr ix,  
def ined  below, that effects a t ransformat ion f rom one coordinate  sys tem in 
space t ime  to another  one. Ac tua l ly  there are two sl ight ly  different  forms o f  
the matr ix .  Matr ices  are now fami l ia r  to " eve rybody"  (physicis ts ,  chemists ,  
engineers ,  mathemat ic ians ,  statist icians,  econometr ic ians ,  and p rogrammers )  
so I be l ieve  it is wel l  wor thwhi le ,  for the sake o f  clarity, to expound  the 
"genera l"  Lorentz  t ransformat ion based  entirely on the matr ix  approach,  and 
also br ief ly  to study the Lorentz  matr ix  itself. Matr ices  have  not  a lways  been 
so famil iar :  even Heisenberg ,  when he invented matr ix  mechanics  in 1925, 
d id  not  know that he was us ing matr ices;  whi le  Whi t t ake r  (1953, pp. 255-257)  
still thought  it  appropr ia te  to discuss  the most  e lementary  proper t ies  of  ma-  
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trices in a book written for physicists. The familiarity of matrices today is 
largely due to the computer revolution. 

One point of the present paper is to show the fallacy in an attack on 
the self-consistency of the special theory of relativity (STR). See Galeczki 
(1993, p. 448; 1994a, p. 78), where he discusses "the incompatibility between 
Lorentz transformations and the inertial frame of reference" and again in 
Galeczki (1994b, p. 85, columns i and ii). I understand that he makes the 
point also in a book in German on a "requiem" for the STR. An English 
version is in press. Once such fallacious attacks are published in four or five 
places it is important to show, as clearly as possible, why these attacks are 
incorrect. Otherwise many people will be misled on the grounds that what 
is said four times is true. The fallacy arises largely because of the ambiguity 
of the word rotation, an ambiguity that is not made clear in the Oxford English 
Dictionary, for example. Before getting down to details, let us consider an 
extremely elementary example of this ambiguity. 

For the last 300 years, physicists and other applied mathematicians have 
been choosing Cartesian coordinate systems that happen to be convenient 
for specific applications. For example, to specify the position of a point inside 
a brick-shaped auditorium one might choose the axes parallel to the walls and 
floor. It would be mathematically consistent, though perhaps inconvenient, to 
use some specific nonrotating rotation of that system. To say that one 
Cartesian system is a rotation of another one might mislead some listeners 
into thinking that one of the two systems is rotating if we do not specify 
otherwise. That is why I have used the oxymoron-sounding expression "non- 
rotating rotation." When one changes one's mind about what frame of refer- 
ence to use for a specific purpose, it is unnecessary to rotate one's swivel 
chair. So much for the preliminaries. 

2. THE THREE OBSERVERS 

An inertial system is a four-dimensional spatial and temporal coordinate 
system in which a particle under no forces moves with a uniform velocity 
(a vector). An "inertial observer" is one at rest in an inertial system which 
I call a Natural Coordinate System or NCS for that observer. (It is often 
known, in less self-explanatory terminology, as a "proper" system, a usage 
that clashes with the definition of a proper orthogonal matrix.) Any nonrotat- 
ing spatial rotation of an NCS is also an NCS for that observer, so each 
inertial observer has w3 (not 004) NCSs and can choose one of these arbitrarily 
or on grounds of convenience. A rotating rotation of an inertial system cannot 
be inertial. 

Let Arthur, Bertha, and Chipso (a robot) be three inertial observers. We 
may call them A, B, and C when we do not want to be personal. Let the 
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coordinates attributed to a generic event  (point event) by these observers in 
their chosen NCSs be, respectively, (XA, YA, ZA, tA) or (~a T, tA), with a similar 
notation for B and C. (The superscript T denotes transposition and ~a T denotes 
a row vector with three components.) For the sake of simplicity, but with a 
slight loss of generality, we assume that the "origin" (0, 0, 0, 0) is the same 
"event" for all three observers; for example, they might meet instantaneously 
at A's spatial origin and synchronize their clocks to zero thereat. The coordi- 
nates used by a given observer will depend on the NCS chosen by that 
observer. Any other NCS for that observer, with the same origin, is a spatial 
nonrotating rotation of the one chosen. 

Our vectors will always be in three or four dimensions. Geometrically 
they have magnitude and direction and we sometimes find it convenient to 
think of them as being rooted at the origin. 

As measured by Arthur in his chosen NCS, Bertha is moving with 
velocity v (denoted boldly). This velocity is necessarily uniform because she, 
too, is "inertial." The corresponding speed is denoted timidly by v. Suppose 
further that the NCS chosen by Bertha is quasiparallel  to Arthur's chosen 
NCS, as measured in his NCS. For the moment I ask the reader to accept 
"quasiparallel" in a vague sense meaning something like "parallel." It will 
turn out later that Bertha, too, will then necessarily "regard" A's NCS as 
quasiparallel to hers. (Nearly all popular books and articles on physics, and 
many unpopular ones, use technical terms without definition, but I shall 
clarify my meaning in Section 4.) This to some extent justifies us in saying 
that the NCSs of A and B are quasiparallel, tout court. But the justification 
is incomplete because a third observer might "regard" these coordinate sys- 
tems as not quasiparallel. We shall soon return to this point. 

Let Chipso have a (uniform) velocity u with respect to Bertha, as "seen" 
by her, and suppose that its chosen NCS is quasiparallel to hers (in her NCS). 
Denote by w Chipso's velocity as seen by Arthur. 

We now discuss the relationships among the coordinates used by A, B, 
and C. 

3. THE MINKOWSKI-LORENTZ MATRIX 

As usual, we denote the speed of light in a vacuum by c (as measured 
in an inertial system), and the square root of minus 1 by i. 

The ratio v/c is denoted by uppercase bold V and v/c is denoted by V. 
The components of V are denoted by V~, V2, and V3 in a specified spatial 
coordinate system. We think of V as a column vector with these three compo- 
nents. The scalar V rV = V 2 equals V~ + V~ + V~. It must "subceed" 1. 
We use similar notations in relation to U and W. Let 

'~ = ( t  - -  V2) -1/2, ~ = (1 - U 2 )  -1/2, ~ ~- (1 - W 2 )  -1/2 ( l )  
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For the ordinary familiar or "special" Lorentz transformation, from A's 
coordinate system to B's, one assumes that both x axes are chosen to be 
parallel to v. But without this restriction we have the more general Lorentz 
transformation, said in the literature to be "without rotation" if B's NCS is 
quasiparallel to A's as seen by A. This quasiparallel transformation [for exam- 
ple, Arzelibs (1966, p. 74), who cites the original (1959) French edition of 
Tonnelat (1966); MOiler (1972, p. 41); or, in effect, Thomas (1927, p. 5)], 
with the obvious meaning for the subscript B, is 

Yn = 
ZB 
ict8 

+ (3'- 1) V2 ( 7 -  1) VIV2, VLV3 
V-- ~, ~ (7 - 1) ---~-, i~lV," 

VzV~ V22 - n V2V3 i'yV2 
(-y - 1 ) - V y - ,  1 + (-~ - 1)V~,  (-y . ,  v 2 ,  

v3 v~ v3 v2 
( ~ -  1 ) - W - '  ( ~ -  l)--V-~-, 1 + ( - r  1) , i'yv3 

-i~lV~, -i~V2, -i',lV3, 

L xA ] yA (2) 
Za 

ict A 

which is a linear transformation with Minkowski-Lorentz matrix M(V). This 
matrix can be written more succinctly, in partioned form, as 

M ( V ) = [ I 3 + ( 7 - 1 ) W r / V 2 ,  i~V] 
_i~/V r, (3) 

which generalizes the ordinary or special transformation matrix 

O, O, i~lV] 
0, 1, 0, 01 
0, O, 1, ~ ]  (4) 

-i~/V, 0, 0, 

In the definition (3), I3 denotes the three-by-three unit matrix. Note that VV T 
is a symmetric three-by-three matrix of rank one, and that M(V) is Hermitian. 
It is also pseudo-orthogonal [not unitary, but "complex orthogonal" in the 
terminology of Mathematical Society of Japan (1977), p. 269J] in the sense 
that M(V)M(V) r = 14. We now prove this assertion. Hold in mind that V r v  
= V z. We have 

M(V)M(V) r 

I VV r 
= I 3 + ( ' / - 1 )  V 2 ,  

-i~/V r, 

i:v] 
l 13 + (~/ - -  1 )  V 2  , 

i-r ~, 
(5) 

The top left-hand three-by-three matrix in this product is 
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V V  T V V  T v v T  7 2 W  T 
/3 + 2(~/ -- 1)--VT + ('y - 1) 2 V4 

VV r 
= I3 + - 7 1 2 ( ~ /  - -  l )  + (~/ --  1) 2 --  "y2V2] = I 3 

because the bracketed expression equals ~2(1 - V 2) - 1 = 0. 
The top fight-hand three-by-one matrix (a column 3-vector) in the 

product (5) is 

_ 1 ~ V V r V  
-i~/V - i'y('y ) - - 7 - -  + i~/2V = -iV[~/ + ~('y - 1) - ~2] = 0 

Similarly, or because the product of any matrix with its transpose is symmetric, 
the bottom left-hand horizontal vector is O r . The bottom right-hand element is 

_~2Vr  v + .y2 = ~/2(1 _ V 2) = 1 

Thus 

M(V)M(V) r = I4 (6) 

so the pseudo-orthogonality of M(V) is established. Note that the top left- 
hand three-by-three matrix of M(V) is not orthogonal. It is symmetric. 

Now M(V) r = M ( - V ) ,  so 

M ( V ) M ( - V )  = / 4  and M ( V ) r M ( V )  = 14 (7) 

and therefore 

[M(V)]-1 = M ( - V )  (8) 

4. T H E  M E A N I N G  OF A QUASIPARALLE L 
T R A N S F O R M A T I O N  

Consider two events (~A, ictA)r and (~,~, ictA)r which are simultaneous 
in Arthur's NCS, indeed in any of his NCSs. The vector joining them is 

The corresponding vector in Bertha's NCS, chosen to make M(V) appropriate 
(see below), is 

[ A~B ] 

[ h  + (~, - U v v r / v  2, " 
L 

[/3 + (~ - 1)VVr/V2]A~a] 
= _ i ~ V r A ~  ] 
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(Thus the two events are not simultaneous in B's chosen NCS unless V is 
orthogonal to A~A.) The spatial vector A~A is transformed into 

A~B ---- [/3 q- (~ -- 1)VVT]VE]A~A (9) 

Now A~A Can be expressed in the form hV + txS, where the spatial vector 
S is orthogonal to V, and k and tx are real scalars. Since (9) is a linear 
transformation, it is sufficient to find its effect on V and S separately. We have 

[13 + (~, - 1)vvr/v2]v = V + ( ' , / -  1)VVTV/V 2 

= "yV (because VrV = V 2) 

Again 

Therefore 

[/3 + ('~/ -- 1)VVr/V2] s = S (because VrS = 0) 

A~B = h~/V + IXS (10) 

Thus any component of A~a orthogonal to V is the same in Bertha's NCS, 
while the component parallel to V remains parallel to V but is multiplied by 
~/. So it makes some sense to say that B's NCS is quasiparallel to A's, but 
it would be misleading to call it parallel because A~8 is parallel to A(,A only 
when h -- 0 or Ix = 0. Another description in the literature is that M(V) 
effects a transformation without rotation, the meaning of which will soon 
be clarified. 

The Minkowski-Lorentz matrix for going from B to A is [M(V)]-1 and 
this is equal to M ( - V )  [see equation (8)]. This shows that, in Bertha's NCS, 
Arthur's velocity is - v  and that his NCS is quasiparallel to hers. Thus 
quasiparallelism is a "mutual" attribute, as we claimed earlier, before giving 
a rigorous definition. 

Before Arthur and Bertha were introduced they might not have known 
what the velocity v was and there would have been no reason for their NCSs 
to be quasiparallel. There might be many other observers that could influence 
the selections of NCSs by Arthur and Bertha, or they might choose their 
NCSs in a random manner. So there is nothing sacrosanct about quasiparallel- 
ism. Thus a still more general transformation from A to B is 

where R represents a spatial nonrotating rotation, that is, a three-by-three 
proper orthogonal matrix. It depends only on what NCSs are chosen by A 
and B. 
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The basic assumption of the theory is that, whatever NCSs are chosen, 
then the transformation from A's coordinates to B's will necessarily be of the 
form (11). If A chooses a specific NCS, then there will be an NCS that B 
could choose that would make R = 13. In that case the transformation from 
A to B can be called quasiparallel (or mutually quasiparallel). 

5. INVARIANCE OF THE RELATIVISTIC "INTERVAL" 

Just as an orthogonal transformation preserves lengths, similarly the 
pseudo-orthogonal transformation M(V) preserves the relativistic squared 
interval 

(~kXA) 2 -I- (Aya)2  + (AZA)2 - -  c2(AtA) 2 

that is, the interval squared is the same for B as for A. A proof follows from 
(7) because the interval squared is 

T 

[ A~. l~[ A~~ l = [.a51 ~WM(v)[.A~ ~ l LicAtBJ LicAtBj LlCI.~IA_] LtCZatAJ 

F a~ l~[ a~A 1 
= [icAtaJ LicAtAJ 

The most general transformation matrix (11) also leaves the squared 
interval unchanged. 

6. HOW TO DO THE NUMERICAL CALCULATIONS, AND THE 
B R O T H E R  O F  M(V) 

In numerical examples, it is convenient, at least in current SAS, to avoid 
the use of complex numbers by means of the following simple observation. 
To form the product of two conformably partitioned matrices of the form 

[ M1 iM2][ N1 iN2] 
-iM3 M 4 J - i N 3  N4J (12) 

compute the product 

] ] -342 [ Nb -N2 
-M3, M4 L-N3, N4 

and then, in the product, replace the minus sign by i and - i  in the top right- 
hand and bottom left-hand parts, respectively. In our applications this converts 
products of pseudo-orthogonal Hermitian matrices into products of real sym- 
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metric matrices. In this way we confirmed numerically, in a short and almost 
instantaneous SAS program, that M(V), M(U), and M(W) have inverses 
M(-V) ,  M(-U) ,  and M ( - W )  (where W is given below). We used the data 

V1 = 0.512, V2 = 0.253, V3 = 0.759 

UI = 0.091, U2 = 0.151, U3 = 0.863 (14) 

obtained from the first column of the table of random numbers in Fisher and 
Yates (1953). 

Another readily seen relationship between the "brother" matrices 

M = _iM3, M4 J and Mr~,l [ -M3,  M4 

is that, if Mreal has an eigenvector 

[:] 
with eigenvalue k, then M has an eigenvector 

[a] 
ib 

with the same eigenvalue h. (Note that if an eigenvector is multiplied by a 
nonzero scalar, the result is regarded as the same eigenvector.) In particular, 
the Minkowski-Lorentz matrix M(V) has as its brother the Lorentz matrix 

L(V) = [I3 + ( ' y -  1)VVT/V2, - ~ V ]  
_~V~ ' (16) 

and we see that M(V) and L(V) have the same eigenvalues and closely related 
eigenvectors. We shall see later that the eigenvalues are 

(1 + C 
1, 1, ~ I - V ] '  and \ 1 ~ )  (17) 

The product of the eigenvalues is + 1, so the determinant is + 1 and M(V) 
is a proper pseudo-orthogonal matrix. It is interesting that the nonunit eigen- 
values are equal to the Doppler factors as given, for example, by Einstein 
(1923, p. 56). He says (Einstein, 1923, p. 58) that it is "remarkable that the 
energy and the frequency of a light complex vary with the state of motion 
of the observer in accordance with the same law." We have now seen the 
same formulas occurring in yet a third context. This is discussed further in 
Section 12. 
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7. THE ROTATION "PARADOX" 

If B's chosen NCS is quasiparallel to A's, and C's is quasiparallel to 
B's, then the transformation from A to C is obtained by transforming from 
A to B and then from B to C, by the formula 

where ~c is a self-explanatory notation. So the matrix of the transformation 
from A to C, under the assumptions just made, is 

M(U)M(V) (19) 

not M(V)M(U). (Hermitian matrices, even two-by-two, resemble symmetric 
matrices in that they do not commute in general.) 

It might be (incorrectly) conjectured that if C's chosen NCS is quasiparal- 
lel to B's (which is quasiparallel to A's), then C's is quasiparallel to A's. But 
this conjecture would be based on the "tyranny of words" or on a false analogy 
with Euclidean geometry, especially if we had used the word "parallel" instead 
of "quasiparallel." It turns out that, in general, 

M(W) r M(U)M(V) (20) 

because, under the assumptions made, the NCSs of A and C turn out not to 
be quasiparallel unless U is parallel to V in Bertha's "opinion." [Actually if 
two vectors are parallel in one inertial system, then they are parallel in all 
inertial systems, for the Lorentz transformation is linear and transforms finite 
points to finite points. For a more explicit proof see Good (1994, Endnote 
1).] This at first somewhat surprising fact was used as the basis of his work 
on the "kinematics of an electron with [spinning about] an axis" by Thomas 
(1927). He says, on his first page, "The main fact used is that the combination 
of two 'Lorentz transformations without rotation' in general is not of the 
same form but is equivalent to a Lorentz transformation with a rotation." He 
does not prove this, nor cite a reference, nor explain clearly what he means, 
but he regards it as well known. Let us call (20), or more precise forms of 
it, the relativistic nonrotating rotation "paradox," or, for short, the rotation 
"paradox." It, and Thomas's seeming deduction from it, surprised even the 
"cognoscenti of the relativity theory (Einstein included!)" (Uhlenbeck, 1976, 
p. 48). Thomas's paper is hard to understand and was based on an obsolete 
model of the electron (superseded by Dirac's model). According to Pals 
(1982, p. 144) it "took Pauli a few weeks before he grasped Thomas's point." 
The paper has been thought to explain a missing factor of 2 regarding the 
Zeeman effect of a magnetic field on an atomic spectrum. [The Zeeman 
effect is discussed, for example, by Jen (1991). He does not cite Thomas; 
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nor does Dirac (1958).] That factor of 2 is called the "Thomas effect" or 
"Thomas factor." What Thomas describes as "well known," Uhlenbeck much 
later calls a "forgotten relativistic effect." 

Just possibly the factor of 2 is related to Good (1991, p. 594), where 
the circular clock paradox is discussed and where an interesting factor of 2 
occurs and presumably can be explained in terms of general relativity. But 
the present paper is essentially concerned with inertial frames and therefore 
not with rotating systems such as occur in Thomas' model of a spinning 
electron and in the circular clock paradox. 

Since Chipso is in an inertial system we know it must be moving with 
some uniform velocity w in Arthur's NCS if of course we assume STR. The 
NCS used by Chipso, quasiparallel to Bertha's, is one of the ~3 NCSs 
available to it, and therefore must be a spatial nonrotating rotation of the one 
quasiparallel to A's NCS. At this stage of the discussion, this nonrotating 
rotation might be guessed, incorrectly, to be the null rotation. Thus, we know 
(if we assume STR), this knowledge being equivalent to Mr expression 
"for physical reasons" (Mr 1972, p. 52), that 

M ( W ) =  [I3+(e-1)WWr/W2,_ieW r, i~W] 

FR3' ~]M(U)M(V) = (21) 

where R3 is a proper orthogonal three-by-three matrix. The reader should 
check that this (spatial) rotation has no effect on the bottom right-hand 
(scalar) element of M(U)M(V) nor on the bottom left-hand one-by-three 
matrix (horizontal vector). Therefore 

e = ~8(1 +U~V) (22) 

which agrees with formula (1 la) of Pauli (1958) or (2) of Good (1994) (of 
course UrV = VrU because the transpose of a scalar is itself), and 

- i e W  r = -iSUr[I3 + (~ - 1)VVr/V 2] - i~3,V r (23) 

Therefore, by taking the transpose, we see that 

W = U + V [ ~ / +  (3' - 1) Urv/V2] (24) 
(1 + U W ) V  

(coplanar with U and V). This agrees with Mr (1972, p. 52), formula (2.59), 
who obtained it by a very different method (depending on differentiation of 
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spatial coordinates with respect to time). As a further check we can calculate 
W 2 from 

W 2 =  W~+ W22+ W23 (25) 

= [U  z + V 2 + 2UrV + ( u T v )  2 -- U2V2](I  + u T v )  -2  (26) 

and from 

W 2 = 1 - 1/r 2 (27) 

To check by high-school algebra that (26) follows from (24), we start from 
W z = W~W. The numerator of this product is 

UrV UrV 
{ U r +  vr[ 'y(1 + ~ - ) - - - - V - T - ] } { U  + V[~/(1 + ~-~-)---V-T-I} 

The coefficient of "y is readily found to vanish, and then we can deduce (26) 
by using the fact that 2t 2 = (1 - V2) -1 together with five or six lines of 
manipulation. The equality of (26) and (27) then follows readily from the 
expression for r in (22). The matrix method is much easier. We have checked 
the equality of (26) and (27) numerically, by using the data (14). 

A formula equivalent to (26) was given by Einstein in his original (1905) 
paper, based on differentiation [like Mr derivation of (24)], and was 
published in the English version (Einstein, 1923, p. 50), but with a misprint. 
[See also, for example, Good (1994), where the formula was used for refuting 
another attack on the self-consistency of STR.] To be more precise, Einstein 
considered a particle moving with velocity u in what we have called Bertha's 
NCS, this particle acting the part of our third observer (Chipso). 

8. THE PROOF OF THE ROTATION "PARADOX" BEYOND 
ANY DOUBT 

Knowing the formula for W, we can calculate M(W). Let us for the 
moment drop the assumption (21), which was based on "physical reasons." 
Let us define a four-by-four matrix R(U, V) as 

which implies 

R(U, V) = M(W)[M(V)]-I[M(U)] -1 (28) 

M(W) = R(U, V)M(U)M(V) (29) 
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M(U) and M(V) are of course nonsingular, so R(U, V) is properly defined. 
We took the numerical values for V and U given by (14), and, by means of 
a SAS program of negligible running time, we obtained the output 

0.9611333, 0.0291664, 0.27454, 0 ]  
- 0.050347, 0.996246, 0.0704205, 

R(U, V) = -0.271455, -0.081506, 0.9589936, (30) 
0, 0, 0, 

where each number that is printed here as 0 was, in the computer output, 
less than 10 -13 in absolute value. The product of R(U, V) times its transpose 
is found to be/4 correct to at least six decimal places in all 16 entries. This 
verifies that formula (21) is correct far beyond any shadow of doubt, more 
convincingly (for anyone who runs the brief SAS program with the same or 
different input data) than pages of heavy algebra could ever be. Elegant 
algebraic proofs often give more insight, but numerical checks can give more 
personal confidence. 

Thus we now know with total confidence that R(U, V) is of the form 

JR3, Or , 01] (31) 

and it can be calculated as 

M(W)M(-V)M(-U) (32) 

R 3 cannot be calculated as the product of the three-by-three matrices in 
the top left-hand comers of M(-V)  and M(-U).  Unlike g3, they are not 
even orthogonal. 

To summarize, if C chooses its NCS quasiparallel to A's instead of 
quasiparallel to B's, then the Minkowski-Lorentz matrix for going from A 
to C will be given [see (29) and (31)] by 

M(W) = [Or, M(U)M(V) (33) 

instead of by M(U)M(V). In other words, its NCS will be the nonrotational 
spatial rotation R 3 of what might have been naively thought (that is, if it had 
been assumed that quasiparallelism is "transitive"). 

If we rewrite (33) as 

M(U)M(V) = [ 0  ~1 ~]M(W) (33a) 

it shows very clearly what is meant by saying that "the combination of two 
'Lorentz transformations without rotation' . . .  is equivalent to a Lorentz 
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transformation with a rotation." The rotation R3 is a nonrotating spatial 
rotation of Chipso's reference frame, from (i) the one quasiparallel to Bertha's 
to (ii) the one quasiparallel to Arthur's. Chipso's choice would affect the 
details of the calculations as in the very elementary example mentioned in 
the Introduction. But this choice ought not to affect any physical deductions 
such as the extent to which Chipso's clock runs slower than Arthur's in 
Arthur's NCS. Indeed, we have already mentioned, following equation (21), 
that the spatial rotation R 3 does not affect the expressions for �9 and W. 

Phipps (1986, p. 267), says ironically, in relation to Mr expression 
"for physical reasons," "I think what he means is for religious reasons" 
(Phipps's italics). We have now seen that Mr "faith" is miraculously 
justified in the sense that the word physical could legitimately be replaced 
by mathematical, thus yet again confirming the self-consistency of STR. 
(Miracles can convert heretics.) The numerical check shows that an elemen- 
tary algebraic proof of (33) must certainly "exist" in the Platonic sense, that 
is, in the universe of mathematical truths. Readers who begin to write out 
an elementary proof will see how unwieldy it becomes. I have not attempted 
such a proof by using Mathematica. This would be of interest, but it is not 
necessary. Only an elegant or short algebraic proof would be worthwhile. 

Note that Chipso does not have to choose its NCS to be quasiparallel 
to Bertha's. It could equally use the one quasiparallel to Arthur's (and therefore 
nonrotationally rotated with respect to Bertha's) or any other of the oo3 NCSs 
available to it, such as one quasiparallel to an inertial demon named Diabolus, 
Master of the Dark Matter. No physical rotation of the laboratory, nor of 
Chipso's swivel chair, is required. 

When talking to Bertha, Chipso might find it convenient and polite to 
choose its NCS quasiparallel to hers, but when talking to Arthur it might, 
like a politician, change its mind and switch to one quasiparallel to his. 
Because Chipso's choice of NCS is subject so much to its whim and to its 
rapport with Arthur, Bertha, Diabolus, or Elvira, the question arises whether 
the nonrotating spatial rotation R3 has any physical significance as distinct 
from its mathematical or computational convenience. Thomas (1927) believed 
that it does, but Phipps (1986, pp. 266-267) controversially questions it, his 
doubts being based partly on his experiment with a rotating disc (Phipps, 
1974). Perhaps many physicists have accepted Thomas's argument in accor- 
dance with "Blackett's Law." Blackett (1946) remarked seriously that a physi- 
cist regards an argument as correct if it reaches the right conclusion. But I 
think he would have agreed that to explain a missing factor of 2 is less 
impressive than to explain a more complicated factor, such as ar + e, when 
the argument has a given level of obscurity. 
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9. A SEMANTIC CONFUSION CONCERNING ROTATION 

Galeczki (see the citations in our Introduction) regarded the rotation 
"paradox" as contradicting the definition of an inertial frame of reference. 
He overlooked that the rotation is nonrotating. Perhaps he was misled by the 
fact that Thomas (1927) discussed nonrotating rotations and rotating rotations 
(of an electron) almost in the same breath. These remarks are not intended 
to rule out the possibility that Thomas' paper is correct, but to suggest that 
someone who is sure "they" understand the paper might explain it to the 
non-Pauli hoi polloi without relying on Blackett's Law. 

10. THE REAL LORENTZ MATRIX L(V) 

Equation (2) is equivalent to 

where 

[c~t;] = L(V) [c~;a ] (34) 

_Wr, (35) 

which we call the (real) Lorentz matrix as in Section 6. This was the matrix 
we used in our SAS program [more precisely, we happened to use L(-V)],  
but L(V) can also be used for theoretical work instead of M(V). Whereas 
M(V) is Hermitian and pseudo-orthogonal, L(V) is symmetric and real, but 
not orthogonal, although its determinant is 1. A merit of M(V) is that it fits 
in well with the concept of pseudo-Euclidean space in which the invariant 
relativistic squared "interval" is thought of as (Ax) 2 + (Ay) 2 + (Az) ~ + 
[A(/ct)] 2, but the use of L(V) is less abstract and easier to program. The 
relationship between L(V) and M(V) is close, and it is easy to switch from 
one notation to the other one. 

11. THE SPECTRAL ANALYSIS OF L(V) 

The nonunit eigenvalues of L(V) are, as for M(V), ~(1 _+ V), correspond- 
ing respectively to the eigenvectors 

[ V  V] (where V >  0) 

because 

(36) 
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The proof is simply that 

iv] = - '~V 2 + ~/V = ~/(1 - V) V 

etc. Similarly, or from Section 6, 

[+v] 
M(V) iV = ~/(1 ~ V) iV (37) 

The two eigenvectors in (36) are orthogonal in real four-dimensional 
space with coordinates (x, y, z, ct), that is, 

The two eigenvalues just mentioned can also be written in the forms 

(, +_~y" (l - _~'~'-" 
and \ ~ - - - ~ )  (39) TT-~) 

Again, if S is a spatial vector through the origin and orthogonal to V, then 

That is, 

, -ds] ; [  ,,, _,,_o,;[s] 

is] 
spans an eigenplane with eigenvalue 1. This plane contains the origin. It may 
be called the unit eigenplane (corresponding to V). Thus the complete set 
of eigenvalues of L(V), and equally of M(V), is 

(1 + V~ 1/2 { 1 -  V) 1/2 
1, 1, ~ ] - - ~ )  , \ ] - - ~ )  

as promised in Section 6. The check may be noted that the sum of the four 
eigenvalues is 2 + 2~/, which is the trace of L(V) and of M(V). 

On the light cone we must have 

(Ax) 2 + (Ay) 2 + (Az) 2 = (Act) 2 (40) 
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so an arbitrary ray on the light cone is of the form 

[ Q Q ]  (where Q > 0) 

if the coordinates used are (x, y, z, ct). The Lorentz transform of 

is 

(Note that Q - VrQ > 0.) It can be verified by a page of algebra that (41) 
is of the form 

[pP] ( P > 0 )  (42) 

and this again lies on the light cone (as we knew in advance from Section 
5). Similarly, the transform of 

[:] 
is of the form 

where P is again positive. In particular, if Q = _V, we quickly recover the 
formulas for the eigenvectors on the light cone and for their eigenvalues. 

The light cone "as a whole" is the same set of events for A and B (and 
indeed for all "inertial observers"), but the only light rays whose coordinates 
are the same for A and B are the two eigenvectors 

The part of the plane containing these two eigenvectors, and lying within 
or on the light cone, is spanned by vectors that can be parametrized by an 
angle a and can be expressed in two simple ways, thus 
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2 V + = (43) cos ((x/2)[ V ] sin2(od2)[ V V ] I v  v S  (x ] 

with 0 -< eL --< ~. Each such vector is, in an obvious sense, pseudo-orthogonal 
to the unit eigenplane and in the Minkowski plane. Its Lorentz transform is 

[ V(cos a-V) ] 
= ?IV(1 - Vcos  ~)_, (44) 

(Note the checks when et = 0 and et = "rr.) 
It is suggestive that the Doppler ratio of frequencies in Einstein (1923, 

p. 56) is 

y(1 - V cos d~) (45) 

where his d~ seems to be the same as our oz. Thus the ratio of B's to A's time 
components in (44) is equal to the Doppler ratio. Einstein gives also a formula 
for aberration, relating the apparent directions of  a very distant "fixed star" 
from two different frames having relative velocity v. For another proof see 
Whittaker (1953, p. 40). The formula, in Whittaker's notation, is 

c o s t ~ ' -  c o s 0 -  V (46) 
1 - V cos 

where t~ and t~' denote the angles between V and the beam directions as 
measured in the two frames. The 4-vector on the right side of (44) has the 
same direction as 

I V  cos (x'] V (47) 

where 

cos a - V 
cos ct' - (48) 

1 - V cos ct 

The identity of form of (46) and (48) can hardly be coincidental, but I have 
not found an explanation. 

12. THE IMAGINARY MINKOWSKI PLANE 

For discussing the imaginary Minkowski rotation (using geometry in 
the field of  complex numbers) it is convenient to use the time variable -r = 
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ict rather than ct, and the M matrix rather than the L. We are now using the 
word "rotation" in yet a third sense. 

Spacetime can be "factorized" into the "direct product" of two planes. 
One of them is the unit eigenplane, say IIl(V), and the other, say II2(V), is 
pseudo-orthogonal to III(V). [The planes l-Il(V) and II2(V) have just one 
point of intersection, namely the origin.] That is, the relativistic scalar product 
of a vector in II~(V) and a vector in HE(V) is always zero. The plane II2(V ) 
contains V and the -r axis, and may be called the Minkowski plane. We now 
consider the effect of applying M(V) to the Minkowski plane. Let V (1) denote 
the 4-vector 

Then 

where 

V(a)= [ vc~ (49) 

M(V)V (~) = V (2) (50) 

[ V(cos ] a - V )  
V(2) = ~/[iV(1 - Vcos a) (51) 

_ 1  

The relativistic squared lengths (squared "intervals") of V(1) and V (2) are both 
- V 2 sin2a, naturally equal because M(V) is pseudo-orthogonal, but the reader 
is invited to check it from (49) and (51). Note, too, what happens when a 
= 0 or ax. The relativistic scalar product of V (l) and V (2) is _~/2 sin2a. So, 
if 0 is the angle from V ~) to V ~2), we have 

cos 0 = ~, sin 0 = +__(1 - ~/2)m, 

Thus, holding in mind that V < I, we have 

0 = ---tan-l(iV)= +_liv (iV) 3 

L 3 

= _ i  tanh-lV 

tan 0 = ++_iV (52) 

(iV)5 ] 
- -  ~ 1 7 6  

5 

(53) 

Since V (2) is a continuous function of V and a, if 0 < a < -tr, the 
ambiguous sign must always be plus or always minus. But when v r  is of 
the form (Vl, 0, 0, 0) we have the familiar special Minkowski-Lorentz 
transformation where the sign is positive. Thus, for all V we have 

i 1 + V ( 0 < a < w )  (54) 0 = tan-l(iV) = i tanh -1 V = ~ log 1 - V 

which is independent of a. Therefore the Minkowski-Lorentz transformation 
rotates the Minkowski plane by an imaginary angle equal to i times the 
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"rapidity," as defined, for example, by Eddington (1930, p. 22 with an 
acknowledgment to A. A. Robb). The rotation is "about" the plane III(V) 
(in the sense in which one talks of a rotation of a rigid body, in three 
dimensions, about an axis). 

For the special Lorentz transformation one is used to talking about a 
rotation of the (x, "r) plane, but that is merely because the x axis is chosen 
parallel to V. It is more general to describe the rotation as of the Minkow- 
ski plane. 

When V = - 1, the right side of formula (53) takes the form +-_i~, which 
is not strictly meaningful, but it is not too bad because, as V ~ __-1, the 
imaginary angle tends to ---i~. It is interesting to make a comparison with 
planar projective geometry. The projective geometer Askwith (192 I, p. 243), 
for example, states that the line y = ix makes the same angle tan-'(/) with 
every line y = mx,  where m ~ i, because 

_1[ i - rn \ tan t ~  } = tan-'(/) (55) 

He does not point out that t an - l ( / )  = i~. The physical interpretation is that, 
however fast you travel, it remains just as difficult to catch up with a light 
beam, the "Red Queen effect," so to speak. ("It takes all the running you 
can do to keep in the same place.") In projective geometry, the pair of lines 
y = +__ ix, which is also a circle of zero radius, is known as the pair of isotropic 
or absolute lines which pass through the circular points at infinity. [They 
were introduced by J. V. Poncelet in 1822 according to Kline (1972, p. 845).] 
Similarly, the sphere X 2 Jr- y2 + Z 2 .q_ ,1.2 : 0 ,  of radius zero, is an imaginary 
cone cutting the hyperplane at infinity in an imaginary sphere (Mathematical 
Society of Japan, 1977, Section 344E). The name absolu te  is also appropriate 
in the context of relativity theory because of the invariance of the light cone. 

13. THE INTUITIVE RESOLUTION OF THE ROTATION 
"PARADOX" 

For the sake of simplicity consider, for the moment, spacetime in 2 + 
1 = 3 dimensions. It was noticed by Euler (see, for example, Lamb, 1929, 
pp. 2-3) that a rotation of a solid three-dimensional body followed by another 
such rotation is equivalent to yet a third rotation, in general unique. (In matrix 
terminology the product of two proper three-by-three orthogonal matrices is 
a third proper orthogonal matrix. Each of the three has in general a unique 
real eigenvector with eigenvalue 1.) We have just seen that a "general" 
Lorentz transformation "without spatial rotation" is equivalent to an imaginary 
rotation abou t  a spatial plane, or about a spatial line if the spacetime has only 
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2 + 1 dimensions. From this point of view, two consecutive transformations in 
2 + 1 dimensions each without spatial rotation are equivalent to two consecu- 
tive imaginary rotations about two distinct spatial lines, distinct if, in our 
previous notation, u is not parallel to v. By Euler's theorem one would expect 
the result to be equivalent to a single imaginary rotation, corresponding to 
M(W). This shows that the "paradox" is only to be expected in 2 + 1 
dimensions and therefore should not be surprising in 3 + 1 dimensions. 
Indeed it would be highly paradoxical if it did not occur. 
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